If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1234x^2+1234x=56789
We move all terms to the left:
1234x^2+1234x-(56789)=0
a = 1234; b = 1234; c = -56789;
Δ = b2-4ac
Δ = 12342-4·1234·(-56789)
Δ = 281833260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{281833260}=\sqrt{4*70458315}=\sqrt{4}*\sqrt{70458315}=2\sqrt{70458315}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1234)-2\sqrt{70458315}}{2*1234}=\frac{-1234-2\sqrt{70458315}}{2468} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1234)+2\sqrt{70458315}}{2*1234}=\frac{-1234+2\sqrt{70458315}}{2468} $
| 4w=1164/8 | | 11v=-18+8v | | 8x+24=9x-6 | | 6t+1-3=-2+3t | | (X)^2+(x+3)^2=225 | | g/4+13=15 | | 6/y=54 | | 6x^2+5000x=45677 | | (X)2+(x+3)^2=225 | | 3.30x+339+3.45x=15664.50 | | 7x+19=6x-2 | | 2x•x=204 | | 7x-6x=-19+2 | | (X)2+(x+3)2=225 | | 0.05x+0.03(150,000-x)=5,500 | | -7(x+1)=2=3 | | 1,1/2y=9 | | 8p+p-5=10+6p | | 8x-2(x+6)=7x-5 | | 72+n+n=180 | | 9u=7+8u | | r/12.7=15.26 | | 8=p/3+4 | | 54+n=102 | | 22.5a=-70.65 | | (3x-6)(x-6)=40x+240 | | 5x-34=68 | | -6=2(3x+6) | | 4-2d=-8-6d | | 3b+2=19 | | -1=z+9/2 | | 6d=7d+4 |